Flipping properties and huge cardinals
نویسندگان
چکیده
منابع مشابه
Laver Sequences for Extendible and Super-Almost-Huge Cardinals
Versions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses, Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a reg...
متن کاملThe large cardinals between supercompact and almost-huge
I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j : V → M such that M is closed under sequences of length sup{ j(f)(κ) | f : κ→ κ }. Some of the other cardinals analyzed i...
متن کاملSingular Cardinals and Square Properties
We analyze the effect of singularizing cardinals on square properties. An old theorem of Dzamonja-Shelah/Gitik says that if you singularize an inaccessible cardinal while preserving its successor, then κ,ω holds in the bigger model. We extend this to the situation where a finite interval of cardinals above κ is collapsed. More precisely, we show that if V ⊂ W , κ is inaccessible in V , cf (κ V ...
متن کاملSaturated ideals obtained via restricted iterated collapse of huge cardinals
A uniform method to define a (restricted iterated) forcing notion to collapse a huge cardinal to a small one to obtain models with various types of highly saturated ideals over small cardinals is presented. The method is discussed in great technical details in the first chapter, while in the second chapter the application of the method is shown on three different models: Model I with an א1-comp...
متن کاملIndestructibility properties of remarkable cardinals
Remarkable cardinals were introduced by Schindler, who showed that the existence of a remarkable cardinal is equiconsistent with the assertion that the theory of L(R) is absolute for proper forcing [Sch00]. Here, we study the indestructibility properties of remarkable cardinals. We show that if κ is remarkable, then there is a forcing extension in which the remarkability of κ becomes indestruct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1989
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-132-3-171-188